Optimal regularity results for the one-dimensional prescribed curvature equation via the strong maximum principle

نویسندگان

چکیده

A refined version of the strong maximum principle is proven for a class second order ordinary differential equations with possibly discontinuous non-monotone nonlinearities. Then, exploiting this tool, some optimal regularity results, recently established by López-Gómez and Omari in [15] , [16] [17] bounded variation solutions non-autonomous quasilinear driven one-dimensional curvature operator, are substantially improved admitting general prescribed curvatures incorporating boundary conditions. The novel approach developed here yields new, deeper, interpretation assumptions introduced our previous papers, simultaneously clarifying their meaning making fully transparent connection principle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Regularity of Weak Solutions to the Prescribed Mean Curvature Equation for a Nonparametric Surface

It is known that for the parametric Plateau’s problem, weak solutions can be obtained as critical points of a functional (see [2, 6, 7, 8, 10, 11]). The nonparametric case has been studied for H = H(x,y) (and generally H = H(x1, . . . ,xn) for hypersurfaces in Rn+1) by Gilbarg, Trudinger, Simon, and Serrin, among other authors. It has been proved [5] that there exists a solution for any smooth ...

متن کامل

Characterizing the Strong Maximum Principle

In this paper we characterize the degenerate elliptic equations F(Du) = 0 whose subsolutions (F(Du) ≥ 0) satisfy the strong maximum principle. We introduce an easily computed function f on (0,∞) which is determined by F, and we show that the strong maximum principle holds depending on whether ∫ 0+ dy f(y) is infinite or finite. This complements our previous work characterizing when the (ordinar...

متن کامل

The Equation of Prescribed Ricci Curvature

Introduction. In [5], J. Milnor cited "understanding the Ricci tensor Rik = J^ Rt'kl 9J as a fundamental problem of present-day mathematics. A basic issue, then, is to determine which symmetric covariant tensors of rank two can be Ricci tensors of Riemannian metrics. The definition of Ricci curvature casts the problem of finding a metric g which realizes a given Ricci curvature R as one of solv...

متن کامل

Subharmonic solutions of the prescribed curvature equation∗

We study the existence of subharmonic solutions of the prescribed curvature equation − ( u′/ √ 1 + u′ )′ = f(t, u). According to the behaviour at zero, or at infinity, of the prescribed curvature f , we prove the existence of arbitrarily small classical subharmonic solutions, or bounded variation subharmonic solutions with arbitrarily large oscillations. 2010 Mathematics Subject Classification:...

متن کامل

Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation

We introduce a non-overlapping variant of the Schwarz waveform relaxation algorithm for wave propagation problems with variable coefficients in one spatial dimension. We derive transmission conditions which lead to convergence of the algorithm in a number of iterations equal to the number of subdomains, independently of the length of the time interval. These optimal transmission conditions are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2023

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2022.126719